Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Nitronium tetrafluoroborate

Ingo Krossing,* Ines Raabe and Esther Birtalan

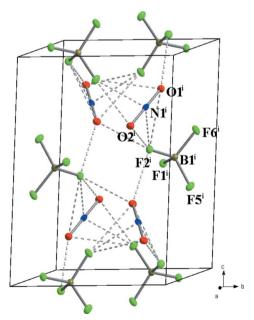
Institut für Anorganische und Analytische Chemie, Universität Freiburg, Albertstr. 21, D-79104 Freiburg i. Br., Germany

Correspondence e-mail: krossing@uni-freiburg.de

Key indicators

Single-crystal X-ray study T = 100 KMean $\sigma(O-N) = 0.001 \text{ Å}$ R factor = 0.019 wR factor = 0.061Data-to-parameter ratio = 10.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.


Commercially available nitronium tetrafluoroborate, $NO_2^+ \cdot BF_4^-$, has been recrystallized from CH_2Cl_2 as a side-product of a reaction in which it has been used as a starting material. Both the NO_2^+ cations and the BF_4^- anions are packed in considerably distorted cubic environments. The N=O distances of 1.1153 (8) and 1.1160 (7) Å as well as the O=N=O bond angle of 179.89 (7)° are similar to those found in other NO_2^+ -containing salts described in the literature.

Received 5 December 2006 Accepted 3 January 2007

Comment

The N=O distances in [NO₂][BF₄] of 1.1153 (8) and 1.1160 (7) Å as well as the O=N=O bond angle of 179.89 (7)° are in good agreement with those found for other nitronium salts such as [NO₂][Fe(NO₃)₄] ($d_{av.}$ = 1.116 Å) or [NO₂][Zr(NO₃)₅] ($d_{av.}$ = 1.105 Å) (Tikhomirov *et al.*, 2002). In addition, the B-F distances (see Table 1) are typical for a tetrafluoroborate anion.

Weak bonding interactions shorter than the sum of the van der Waals radii [r(O + F) = 3.0 Å, r(N + F) = 3.1 Å; Holleman, 1995) are found between the cations and anions. The shortest are the N-F contacts which range from 2.474 (1) to 2.500 (1) Å (Fig. 1). Both the NO_2^+ cations and the BF_4^- anions are packed in considerably distorted cubic environments.

Figure 1 Packing diagram of [NO₂][BF₄]. Dashed lines represent cation–anion contacts shorter than the sum of the van der Waals radii. Displacement ellipsoids are drawn at the 25% probability level. [Symmetry code: (i) $1-x,\frac{1}{2}-x,\frac{1}{2}-z.$]

© 2007 International Union of Crystallography All rights reserved

inorganic papers

Experimental

Colourless block-shaped crystals of the title salt (Sigma–Aldrich) were fortuitously recrystallized from CH_2Cl_2 as a by-product of an attempted reaction with P_4 .

Crystal data

$NO_2^+ \cdot BF_4^-$	Z = 4
$M_r = 132.82$	$D_x = 2.232 \text{ Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 6.5567 (13) Å	$\mu = 0.30 \text{ mm}^{-1}$
b = 6.8243 (14) Å	T = 100 (2) K
c = 9.1244 (18) Å	Block, colourless
$\beta = 104.40 \ (3)^{\circ}$	$0.4 \times 0.2 \times 0.2 \text{ mm}$
$V = 395.44 (14) \text{ Å}^3$	

Data collection

STOE IPDS-II diffractometer	768 independent reflections	
φ scans	662 reflections with $I > 2\sigma(I)$	
Absorption correction: none	$R_{\rm int} = 0.027$	
2652 measured reflections	$\theta_{\rm max} = 26.0^{\circ}$	

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0289P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.019$	+ 0.0515P]
$wR(F^2) = 0.061$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.16	$(\Delta/\sigma)_{\text{max}} = 0.019$
768 reflections	$\Delta \rho_{\text{max}} = 0.13 \text{ e Å}^{-3}$
73 parameters	$\Delta \rho_{\min} = -0.12 \text{ e Å}^{-3}$

Table 1 Selected bond lengths (Å).

F1-B1	1.3885 (8)	F5-B1	1.3908 (9)
F2-B1	1.3907 (8)	F6-B1	1.3896 (9)

Data collection: *XPOSE* (Stoe, 2003); cell refinement: *CELL* (Stoe, 2003); data reduction: *X-RED32* (STtoe, 2003); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *DIAMOND* (Crystal Impact, 2006); software used to prepare material for publication: *SHELXL97*.

References

Crystal Impact (2006). *DIAMOND*. Version 3.1. Crystal Impact GbR, Bonn, Germany.

Holleman, A. F. (1995). *Lehrbuch der anorganischen Chemie*, p. 102. Berlin, New York: De Gruyter.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Stoe (2003). CELL, XPOSE and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.

Tikhomirov, G., Morozov, I., Znamenkov, K., Kemnitz, E. & Troyanov, S. (2002). Z. Anorg. Allg. Chem. 628, 872–876.